Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 8 de 8
Filtre
1.
EBioMedicine ; 89: 104485, 2023 Mar.
Article Dans Anglais | MEDLINE | ID: covidwho-2254674

Résumé

BACKGROUND: Obesity is a worldwide epidemic and is considered a risk factor of severe manifestation of Coronavirus Disease 2019 (COVID-19). The pathogenicity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and host responses to infection, re-infection, and vaccination in individuals with obesity remain incompletely understood. METHODS: Using the diet-induced obese (DIO) mouse model, we studied SARS-CoV-2 Alpha- and Omicron BA.1-induced disease manifestations and host immune responses to infection, re-infection, and COVID-19 mRNA vaccination. FINDINGS: Unlike in lean mice, Omicron BA.1 and Alpha replicated to comparable levels in the lungs of DIO mice and resulted in similar degree of tissue damages. Importantly, both T cell and B cell mediated adaptive immune responses to SARS-CoV-2 infection or COVID-19 mRNA vaccination are impaired in DIO mice, leading to higher propensity of re-infection and lower vaccine efficacy. However, despite the absence of neutralizing antibody, vaccinated DIO mice are protected from lung damage upon Omicron challenge, accompanied with significantly more IFN-α and IFN-ß production in the lung tissue. Lung RNAseq and subsequent experiments indicated that COVID-19 mRNA vaccination in DIO mice boosted antiviral innate immune response, including the expression of IFN-α, when compared to the nonvaccinated controls. INTERPRETATION: Our findings suggested that COVID-19 mRNA vaccination enhances host innate antiviral responses in obesity which protect the DIO mice to a certain degree when adaptive immunity is suboptimal. FUNDING: A full list of funding bodies that contributed to this study can be found in the Acknowledgements section.


Sujets)
Vaccins contre la COVID-19 , COVID-19 , Animaux , Humains , Souris , SARS-CoV-2 , Souris obèse , Réinfection , Régime alimentaire , Obésité , Anticorps neutralisants , Interféron alpha , ARN messager , Antiviraux , Anticorps antiviraux
2.
Clin Transl Med ; 12(8): e886, 2022 08.
Article Dans Anglais | MEDLINE | ID: covidwho-1971252

Résumé

BACKGROUND: The exact animal origin of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remains obscure and understanding its host range is vital for preventing interspecies transmission. METHODS: Herein, we applied single-cell sequencing to multiple tissues of 20 species (30 data sets) and integrated them with public resources (45 data sets covering 26 species) to expand the virus receptor distribution investigation. While the binding affinity between virus and receptor is essential for viral infectivity, understanding the receptor distribution could predict the permissive organs and tissues when infection occurs. RESULTS: Based on the transcriptomic data, the expression profiles of receptor or associated entry factors for viruses capable of causing respiratory, blood, and brain diseases were described in detail. Conserved cellular connectomes and regulomes were also identified, revealing fundamental cell-cell and gene-gene cross-talks from reptiles to humans. CONCLUSIONS: Overall, our study provides a resource of the single-cell atlas of the animal kingdom which could help to identify the potential host range and tissue tropism of viruses and reveal the host-virus co-evolution.


Sujets)
COVID-19 , Glycoprotéine de spicule des coronavirus , Animaux , COVID-19/génétique , Spécificité d'hôte , Humains , Récepteurs viraux/métabolisme , SARS-CoV-2/génétique , Glycoprotéine de spicule des coronavirus/métabolisme
3.
Nat Commun ; 12(1): 7083, 2021 12 06.
Article Dans Anglais | MEDLINE | ID: covidwho-1555251

Résumé

The availability of viral entry factors is a prerequisite for the cross-species transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Large-scale single-cell screening of animal cells could reveal the expression patterns of viral entry genes in different hosts. However, such exploration for SARS-CoV-2 remains limited. Here, we perform single-nucleus RNA sequencing for 11 non-model species, including pets (cat, dog, hamster, and lizard), livestock (goat and rabbit), poultry (duck and pigeon), and wildlife (pangolin, tiger, and deer), and investigated the co-expression of ACE2 and TMPRSS2. Furthermore, cross-species analysis of the lung cell atlas of the studied mammals, reptiles, and birds reveals core developmental programs, critical connectomes, and conserved regulatory circuits among these evolutionarily distant species. Overall, our work provides a compendium of gene expression profiles for non-model animals, which could be employed to identify potential SARS-CoV-2 target cells and putative zoonotic reservoirs.


Sujets)
Atlas comme sujet , Analyse sur cellule unique/médecine vétérinaire , Angiotensin-converting enzyme 2/génétique , Angiotensin-converting enzyme 2/métabolisme , Animaux , Oiseaux , Communication cellulaire , Évolution moléculaire , Réseaux de régulation génique , Interactions hôte-pathogène , Poumon/cytologie , Poumon/métabolisme , Poumon/virologie , Mammifères , Récepteurs viraux/génétique , Récepteurs viraux/métabolisme , Reptiles , SARS-CoV-2/métabolisme , Serine endopeptidases/génétique , Serine endopeptidases/métabolisme , Transcriptome , Tropisme viral , Pénétration virale
4.
Front Med (Lausanne) ; 8: 585358, 2021.
Article Dans Anglais | MEDLINE | ID: covidwho-1116697

Résumé

The emergence of the novel human coronavirus, SARS-CoV-2, causes a global COVID-19 (coronavirus disease 2019) pandemic. Here, we have characterized and compared viral populations of SARS-CoV-2 among COVID-19 patients within and across households. Our work showed an active viral replication activity in the human respiratory tract and the co-existence of genetically distinct viruses within the same host. The inter-host comparison among viral populations further revealed a narrow transmission bottleneck between patients from the same households, suggesting a dominated role of stochastic dynamics in both inter-host and intra-host evolutions.

5.
Genome Med ; 13(1): 30, 2021 02 22.
Article Dans Anglais | MEDLINE | ID: covidwho-1097198

Résumé

BACKGROUND: Since early February 2021, the causative agent of COVID-19, SARS-CoV-2, has infected over 104 million people with more than 2 million deaths according to official reports. The key to understanding the biology and virus-host interactions of SARS-CoV-2 requires the knowledge of mutation and evolution of this virus at both inter- and intra-host levels. However, despite quite a few polymorphic sites identified among SARS-CoV-2 populations, intra-host variant spectra and their evolutionary dynamics remain mostly unknown. METHODS: Using high-throughput sequencing of metatranscriptomic and hybrid captured libraries, we characterized consensus genomes and intra-host single nucleotide variations (iSNVs) of serial samples collected from eight patients with COVID-19. The distribution of iSNVs along the SARS-CoV-2 genome was analyzed and co-occurring iSNVs among COVID-19 patients were identified. We also compared the evolutionary dynamics of SARS-CoV-2 population in the respiratory tract (RT) and gastrointestinal tract (GIT). RESULTS: The 32 consensus genomes revealed the co-existence of different genotypes within the same patient. We further identified 40 intra-host single nucleotide variants (iSNVs). Most (30/40) iSNVs presented in a single patient, while ten iSNVs were found in at least two patients or identical to consensus variants. Comparing allele frequencies of the iSNVs revealed a clear genetic differentiation between intra-host populations from the respiratory tract (RT) and gastrointestinal tract (GIT), mostly driven by bottleneck events during intra-host migrations. Compared to RT populations, the GIT populations showed a better maintenance and rapid development of viral genetic diversity following the suspected intra-host bottlenecks. CONCLUSIONS: Our findings here illustrate the intra-host bottlenecks and evolutionary dynamics of SARS-CoV-2 in different anatomic sites and may provide new insights to understand the virus-host interactions of coronaviruses and other RNA viruses.


Sujets)
COVID-19/prévention et contrôle , Génome viral/génétique , Séquençage nucléotidique à haut débit/méthodes , Polymorphisme de nucléotide simple , SARS-CoV-2/génétique , COVID-19/virologie , Fréquence d'allèle , Génotype , Haplotypes , Interactions hôte-pathogène , Humains , Phylogenèse , SARS-CoV-2/classification , SARS-CoV-2/physiologie
6.
Genome Biol Evol ; 12(12): 2467-2485, 2020 12 06.
Article Dans Anglais | MEDLINE | ID: covidwho-968552

Résumé

In the context of the COVID-19 pandemic, we describe here the singular metabolic background that constrains enveloped RNA viruses to evolve toward likely attenuation in the long term, possibly after a step of increased pathogenicity. Cytidine triphosphate (CTP) is at the crossroad of the processes allowing SARS-CoV-2 to multiply, because CTP is in demand for four essential metabolic steps. It is a building block of the virus genome, it is required for synthesis of the cytosine-based liponucleotide precursors of the viral envelope, it is a critical building block of the host transfer RNAs synthesis and it is required for synthesis of dolichol-phosphate, a precursor of viral protein glycosylation. The CCA 3'-end of all the transfer RNAs required to translate the RNA genome and further transcripts into the proteins used to build active virus copies is not coded in the human genome. It must be synthesized de novo from CTP and ATP. Furthermore, intermediary metabolism is built on compulsory steps of synthesis and salvage of cytosine-based metabolites via uridine triphosphate that keep limiting CTP availability. As a consequence, accidental replication errors tend to replace cytosine by uracil in the genome, unless recombination events allow the sequence to return to its ancestral sequences. We document some of the consequences of this situation in the function of viral proteins. This unique metabolic setup allowed us to highlight and provide a raison d'être to viperin, an enzyme of innate antiviral immunity, which synthesizes 3'-deoxy-3',4'-didehydro-CTP as an extremely efficient antiviral nucleotide.


Sujets)
COVID-19/transmission , Cytidine triphosphate/métabolisme , SARS-CoV-2/métabolisme , Protéines virales/métabolisme , COVID-19/épidémiologie , COVID-19/virologie , Cytosine/métabolisme , Évolution moléculaire , Génome viral/génétique , Interactions hôte-pathogène , Humains , Pandémies , ARN viral/génétique , ARN viral/métabolisme , SARS-CoV-2/génétique , SARS-CoV-2/pathogénicité , Uracile/métabolisme , Enveloppe virale/métabolisme , Virulence/génétique , Réplication virale/génétique
7.
Cell Mol Immunol ; 17(11): 1119-1125, 2020 11.
Article Dans Anglais | MEDLINE | ID: covidwho-841899

Résumé

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been redetected after discharge in some coronavirus disease 2019 (COVID-19) patients. The reason for the recurrent positivity of the test and the potential public health concern due to this occurrence are still unknown. Here, we analyzed the viral data and clinical manifestations of 289 domestic Chinese COVID-19 patients and found that 21 individuals (7.3%) were readmitted for hospitalization after detection of SARS-CoV-2 after discharge. First, we experimentally confirmed that the virus was involved in the initial infection and was not a secondary infection. In positive retests, the virus was usually found in anal samples (15 of 21, 71.4%). Through analysis of the intracellular viral subgenomic messenger RNA (sgmRNA), we verified that positive retest patients had active viral replication in their gastrointestinal tracts (3 of 16 patients, 18.7%) but not in their respiratory tracts. Then, we found that viral persistence was not associated with high viral titers, delayed viral clearance, old age, or more severe clinical symptoms during the first hospitalization. In contrast, viral rebound was associated with significantly lower levels of and slower generation of viral receptor-binding domain (RBD)-specific IgA and IgG antibodies. Our study demonstrated that the positive retest patients failed to create a robust protective humoral immune response, which might result in SARS-CoV-2 persistence in the gastrointestinal tract and possibly in active viral shedding. Further exploration of the mechanism underlying the rebound in SARS-CoV-2 in this population will be crucial for preventing virus spread and developing effective vaccines.


Sujets)
Betacoronavirus/physiologie , Techniques de laboratoire clinique/méthodes , Infections à coronavirus/diagnostic , Tube digestif/virologie , Pneumopathie virale/diagnostic , Anticorps antiviraux/métabolisme , COVID-19 , Dépistage de la COVID-19 , Infections à coronavirus/immunologie , Épitopes/immunologie , Humains , Immunité humorale , Immunoglobuline A/métabolisme , Immunoglobuline G/métabolisme , Pandémies , Pneumopathie virale/immunologie , Liaison aux protéines , Domaines protéiques/immunologie , SARS-CoV-2 , Tests sérologiques , Glycoprotéine de spicule des coronavirus/immunologie , Charge virale , Excrétion virale
8.
Genome Med ; 12(1): 57, 2020 06 30.
Article Dans Anglais | MEDLINE | ID: covidwho-618232

Résumé

BACKGROUND: COVID-19 (coronavirus disease 2019) has caused a major epidemic worldwide; however, much is yet to be known about the epidemiology and evolution of the virus partly due to the scarcity of full-length SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) genomes reported. One reason is that the challenges underneath sequencing SARS-CoV-2 directly from clinical samples have not been completely tackled, i.e., sequencing samples with low viral load often results in insufficient viral reads for analyses. METHODS: We applied a novel multiplex PCR amplicon (amplicon)-based and hybrid capture (capture)-based sequencing, as well as ultra-high-throughput metatranscriptomic (meta) sequencing in retrieving complete genomes, inter-individual and intra-individual variations of SARS-CoV-2 from serials dilutions of a cultured isolate, and eight clinical samples covering a range of sample types and viral loads. We also examined and compared the sensitivity, accuracy, and other characteristics of these approaches in a comprehensive manner. RESULTS: We demonstrated that both amplicon and capture methods efficiently enriched SARS-CoV-2 content from clinical samples, while the enrichment efficiency of amplicon outran that of capture in more challenging samples. We found that capture was not as accurate as meta and amplicon in identifying between-sample variations, whereas amplicon method was not as accurate as the other two in investigating within-sample variations, suggesting amplicon sequencing was not suitable for studying virus-host interactions and viral transmission that heavily rely on intra-host dynamics. We illustrated that meta uncovered rich genetic information in the clinical samples besides SARS-CoV-2, providing references for clinical diagnostics and therapeutics. Taken all factors above and cost-effectiveness into consideration, we proposed guidance for how to choose sequencing strategy for SARS-CoV-2 under different situations. CONCLUSIONS: This is, to the best of our knowledge, the first work systematically investigating inter- and intra-individual variations of SARS-CoV-2 using amplicon- and capture-based whole-genome sequencing, as well as the first comparative study among multiple approaches. Our work offers practical solutions for genome sequencing and analyses of SARS-CoV-2 and other emerging viruses.


Sujets)
Betacoronavirus/génétique , Génome viral/génétique , Séquençage nucléotidique à haut débit/méthodes , Séquençage du génome entier/méthodes , COVID-19 , Infections à coronavirus , Variation génétique/génétique , Interactions hôte-pathogène/génétique , Humains , Réaction de polymérisation en chaine multiplex/méthodes , Pandémies , Pneumopathie virale , ARN viral/génétique , SARS-CoV-2
SÉLECTION CITATIONS
Détails de la recherche